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Object cloning

- How do you do object cloning?



Shallow cloning

- Copies an object and alias the references in that object.
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Deep cloning

- Copies the object and its referenced objects.
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- Shallow cloning Is too shallow
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Common practices

- Cloning in Java (Cloneable) and C# (ICloneable):
- Default clone() method is shallow.

- Defining deep cloning is inconvenient and prone to bugs.
- Requires type casting.

class Foo implements Cloneable
{
public Object clone(){
try{
return super.clone();

}
catch( CloneNotSupportedException e )
{
return null;
}



Common practices

- Cloning in C++ :
- Copy constructors and assignment operators.
- Cloning In Eiffel :

- Inherit shallow and deep cloning from the
ANY class. end

class D feature
x: C
y: expanded C

class C feature

test is
do
X :=y —- forbidden
x := clone(y)
X := deep_clone(y)
x.clone(y)

x.deep_clone(y)
end
end



Common practices

- Most practices still suffer from the flaws of shallow and
deep cloning.
- Not automated.
- “Programmer knows best” - they have to define their own cloning.

- What if we have the information to produce more sensible
clones, but had overlooked it?



ey - The ideal model

- We aim to formalise a cloning model that is just right.

- It needs to be able to identify areas that are “important” to
an object.

- Only copy those “important” areas.



Ownership Types

- Ownership types enforce a hierarchical topology over the
heap.




Ownership Types

- Context is the formal set of objects owned by an object.

- Representation is the set of objects which are
conceptually part of an object.
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Deep Ownership

- All reference paths to an object must pass through that
object’s owner.

- Also known as owners-as-dominators.




Deep Ownership

- All reference paths to an object must pass through that
object’s owner.

- Also known as owners-as-dominators.
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Sheep = Shallow + Deep

- Utilises ownership types to identify the “important bits™ of
each object.

- Cloning an object’s representation:
- Copies every object inside the object’s context.
- Aliases every reference to objects outside the object’'s context.
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Sheep cloning

- We have formalised sheep cloning in an ownership
system with deep ownership.

- We have proved soundness and an assortment of
correctness property of our formalism.



A touch of formal

Q = class C<o; <x=<o0,> {N f; M} class declarations
M = Nnmn(N x) {return e;} method declarations
T = N | T type
N = 0:C<o> class type
o = 7 | world | owner owners
e = null | v | v.f | v.f = e | y.m(e) expressions
| new 0:C<o> | sheep(e) | w
B = [ values
0 = x | this | @ expression vartables and addresses
r = 2T, 03 [ variable environments
& = /=<0 owners environments
H = = {N, t>v} heaps
mEp: = Mol map
X=Ro owners relation
X variables
L object address
err errors

null null expression
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A touch of formal

Eil'Fe: T
E; '+ sheep(e) : T

(T-SHEEP)
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A touch of formal
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A touch of formal

Map

SheepAux (v, v, ’H, — D

sheep(v); H~ v'; H'
(R-SHEEP)




A touch of formal

SheepAux(v, v, H, ?) "@\’H {v = "}
sheep(v); H~~

(R-SHEEP)

Sheep clone




A touch of formal

SheepAux(v, v, H, 0) = v’; @, {v =}
sheep(v); H~ v’
(R-SHEEP)

New heap (containing the
Sheep clone)




A touch of formal

- SheepAux function:

- R-SheepInside: Copies the object if it is inside the original
object.

- R-SheepOutside: Creates an alias to the object if the object is
outside the original object.

- R-SheepRef: Creates a reference to an existing Sheep clone of an
object using the Map.

- R-SheepNull: Returns a null, when Sheep cloning a null.



Can we clone it?

- Lets Sheep clone object A.
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Can we clone it?

- R-SheepInside creates the object A’ by copying A.
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Can we clone it?

- R-SheepOutside creates an alias to D.
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Can we clone it?

- R-SheepInside creates the object B’ by copying B.
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D>D
B > B’




Can we clone it?

- R-SheepInside creates the object C’ by copying C.

- T = -~
// D \\
A A’
I |
~ C ~ C’
é //// Bl, //
—
Map: A > A’
D>D
B >» B’
C>»C’




.... Yes we can!

- R-SheepRef creates the reference from object C’ to
object B’ using the map.

Map: A > A’

C>»C’




Proving the formalism

Subject reduction case: R-SHEEP.

For all H, H', v, V', and N, if H +- sheep(v) : N and - H OK and
sheep(v);H ~ v';H' then H'Fv' : N and - H' OK.
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Proving the formalism

Lemma: Mapped type preserves type well-formedness.
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then H - map(/V) OK.

map = {¢ — '}
map(N) = ['/tIN




Proving the formalism

Lemma: Mapped type preserves type well-formedness.

For all H, map, and N, if - H OK, H F map OK, and H F N OK
then H - map(/V) OK.

map = {¢t — ('}
map(N) = [//tJN




Proving the formalism

Lemma: Mapped type preserves type well-formedness.

For all H, map, and N, if - H OK, H F map OK, and H F N OK
then H - map(/V) OK.

map = {¢ — '}

map (V) =




Proving the formalism
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Correctness of the formalism

Correctness property: Sheep Cloning creates a new object.

For all’H, H', v, and /', if F H OK and sheep(t); H~ /; H' then
V' ¢ dom(H) and v # !'.

Where: ¢ =A
V= A
/’ ————— -——
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Correctness of the formalism

Correctness property: Sheep Cloning creates a sub-heap that
contains the new object.

For all H, H', H", ¢, and !/, if + H OK and sheep(r); H~ /; H’
and v # « then 3 H" where H' =H, H" and /' € dom(H") and 1 €
dom(H) .
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Correctness of the formalism

Correctness property: All new objects are in the representation
of the clone, and all objects in that representation are new.

For all H, H', ¢, and /, if + H OK and sheep(r); H~ /; H’
where H' = H, H” and J/ # + then " € dom(H") if and only if

H B =<
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Correctness of the formalism
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Correctness of the formalism

Correctness property: Sheep Cloning does not introduce refer-
ences to the cloned object’s representation.
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Correctness of the formalism

Correctness property: For all references from an object inside
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Correctness of the formalism

Correctness property: Sheep Cloning preserves owners-as-dominators.
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H preserves owners-as-dominators then H’ preserves owners-
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Summary

- Shallow is too shallow.

- Deep is too deep.

- Sheep = shallow + deep.

- Formalised sheep cloning.

- Proved soundness and correctness.



Thank you.

Questions?



