SHEEP CLONING

Paley Li, Nicholas Cameron, and James Noble

Object cloning

- How do you do object cloning?

Shallow cloning

- Copies an object and alias the references in that object.

Shallow cloning

- Copies an object and alias the references in that object.

- —
——
——

Shallow cloning

- Copies an object and alias the references in that object.

—
] —
— —
— —| — —
—

-~
~-———_—’

Deep cloning

- Copies the object and its referenced objects.

Deep cloning

- Copies the object and its referenced objects.

- —
——
——

Deep cloning

- Copies the object and its referenced objects.

—§
= e

-§
§-

2

scrollBar

- Shallow cloning Is too shallow

\ /
S~ aa

scrollBar

-

displayWindow’

7

displayWindow displayWindow’

=) - Deep cloning is too deep

displayWindow

Y

imageDatabase

=) - Deep cloning is too deep

&Su.o‘*
displayWindow displayWindow’
\ \
\ \
))
imageDatabase imageDatabase’

= - Deep cloning is too deep

displayWindow displayWindow’

Common practices

- Cloning in Java (Cloneable) and C# (ICloneable):
- Default clone() method is shallow.

- Defining deep cloning is inconvenient and prone to bugs.
- Requires type casting.

class Foo implements Cloneable
{
public Object clone(){
try{
return super.clone();

}
catch(CloneNotSupportedException e)
{
return null;
}

Common practices

- Cloning in C++ :
- Copy constructors and assignment operators.
- Cloning In Eiffel :

- Inherit shallow and deep cloning from the
ANY class. end

class D feature
x: C
y: expanded C

class C feature

test is
do
X :=y —- forbidden
x := clone(y)
X := deep_clone(y)
x.clone(y)

x.deep_clone(y)
end
end

Common practices

- Most practices still suffer from the flaws of shallow and
deep cloning.
- Not automated.
- “Programmer knows best” - they have to define their own cloning.

- What if we have the information to produce more sensible
clones, but had overlooked it?

ey - The ideal model

- We aim to formalise a cloning model that is just right.

- It needs to be able to identify areas that are “important” to
an object.

- Only copy those “important” areas.

Ownership Types

- Ownership types enforce a hierarchical topology over the
heap.

Ownership Types

- Context is the formal set of objects owned by an object.

- Representation is the set of objects which are
conceptually part of an object.

Ownership Types

- Context Is the formal set of objects owned by an object.

- Representation is the set of objects which are
conceptually part of an object.

Representation = context = -

Deep Ownership

- All reference paths to an object must pass through that
object’s owner.

- Also known as owners-as-dominators.

Deep Ownership

- All reference paths to an object must pass through that
object’s owner.

- Also known as owners-as-dominators.

4 =]

Sheep = Shallow + Deep

- Utilises ownership types to identify the “important bits™ of
each object.

- Cloning an object’s representation:
- Copies every object inside the object’s context.
- Aliases every reference to objects outside the object’'s context.

#=t) - Sheep cloning is just right!

displayWindow’

d- Sheep cloning is just right!

displayWindow’

&__,‘.s - Sheep cloning Is just right!

displayWindow displayWindow’

Sheep cloning

- We have formalised sheep cloning in an ownership
system with deep ownership.

- We have proved soundness and an assortment of
correctness property of our formalism.

A touch of formal

Q = class C<o; <x=<o0,> {N f; M} class declarations
M = Nnmn(N x) {return e;} method declarations
T = N | T type
N = 0:C<o> class type
o = 7 | world | owner owners
e = null | v | v.f | v.f = e | y.m(e) expressions
| new 0:C<o> | sheep(e) | w
B = [values
0 = x | this | @ expression vartables and addresses
r = 2T, 03 [variable environments
& = /=<0 owners environments
H = = {N, t>v} heaps
mEp: = Mol map
X=Ro owners relation
X variables
L object address
err errors

null null expression

A touch of formal

Q = class C<o; <x=<o0,> {N f; M} class declarations
M ::= Nn(N x) {return e;} method declarations
T = N | T type
N = 0:0<0 class type
e = null | v | v.f | v.f = e | y.m(e) expressions
| new 0:C<6> | sheep(e) | w
B .= [values
vy =@| L expression variables and addresses
r = 2T, 0F variable environments
& = /=<0 owners environments
H = v— {N, t>v} heaps
map ::= {tz > ¢} map
X=0 owners relation
X variables
L object address
err errors

null null expression

A touch of formal

Q = class C<o; <x=<o0,> {N f; M} class declarations
M = Nnmn(N x) {return e;} method declarations
T = N | T type
N = 0:C<o> class type
o = 7 | world | owner owners
@ = onll | & | 4.5 | 4.f = ¢ | 4.m(e) eTpressions
| new 0:C<o> | sheep(e) | w
B = [values
0 = x | this | @ expression vartables and addresses
r = 2T, 03 [variable environments
& = /=<0 owners environments
H = = {N, t>v} heaps
map:= Me=ae) map
X=Ro owners relation
X variables
L object address
err errors

null null expression

A touch of formal

Q = class C<o; <x=<o0,> {N f; M} class declarations
M = Nnmn(N x) {return e;} method declarations
T = N | T type
N = 0:C<o> class type
o = 7 | world | owner owners
e = null | v | v.f | v.f = e | y.m(e) expressions
| new 0:C<o> | sheep(e) | w

@ = [values
0 = x | this | @ expression vartables and addresses
r = 2T, 03 [variable environments
& = /=<0 owners environments
H = = {N, t>v} heaps
map:= Me=ae) map
X=Ro owners relation
X variables
L object address
err errors

null null expression

A touch of formal

Q = class C<o; <x=<o0,> {N f; M} class declarations
M = Nnmn(N x) {return e;} method declarations
T = N | T type
N = 0:C<o> class type
o = 7 | world | owner owners
e = null | v | v.f | v.f = e | y.m(e) expressions
| new 0:C<o> | sheep(e) | w

B = [values

= x | this | @ expression vartables and addresses

= 2T, 03 [variable environments

= 0/<6 owners environments
H = = {N, t>v} heaps
map:= Me=ae) map
X=Ro owners relation
X variables
L object address
err errors

null null expression

A touch of formal

Q = class C<o; <x=<o0,> {N f; M} class declarations
M = Nnmn(N x) {return e;} method declarations
T = N | T type
N = 0:C<o> class type
o = 7 | world | owner owners
e = null | v | v.f | v.f = e | y.m(e) expressions
| new 0:C<o> | sheep(e) | w
B = [values
0 = x | this | @ expression vartables and addresses
r = 2T, 03 [variable environments
& = /=<0 owners environments
map:= Me=ae) map
X=Ro owners relation
X variables
L object address
err errors

null null expression

A touch of formal

Q = class C<o; <x=<o0,> {N f; M} class declarations
M = Nnmn(N x) {return e;} method declarations
T = N | T type
N = 0:C<o> class type
o = 7 | world | owner owners
e = null | v | v.f | v.f = e | y.m(e) expressions
| new 0:C<o> | sheep(e) | w
B = [values
0 = x | this | @ expression vartables and addresses
r = 2T, 03 [variable environments
& = /=<0 owners environments
H = = {N, t>v} heaps
{t=1} map

owners relation

X variables
L object address
err errors

null null expression

A touch of formal

Q = class C<o; <x=<o0,> {N f; M} class declarations
M = Nnmn(N x) {return e;} method declarations
T = N | T type
N = 0:C<o> class type
o = 7 | world | owner owners
e = null | v | v.f | v.f = e | y.m(e) expressions
| new 0:C<o> | sheep(e) | w
B = [values
0 = x | this | @ expression vartables and addresses
r = 2T, 03 [variable environments
& = /=<0 owners environments
H = = {N, t>v} heaps
map:= Me=ae) map
@ owners relation
X variables
L object address
err errors

null null expression

A touch of formal

Q = class C<o; <x=<o0,> {N f; M} class declarations
M = Nnmn(N x) {return e;} method declarations
T = N | T type
N = 0:C<o> class type
o = 7 | world | owner owners
e = mill | & | <. f =c | v.m(e) expressions
| new 0:C<o> |{sheep(e) v
B .= [values
0 = x | this | @ expression vartables and addresses
r = 2T, 03 [variable environments
& = /=<0 owners environments
H = v— {N, t>v} heaps
map ::= {tz > ¢} map
X=0 owners relation
X variables
L object address
err errors

null null expression

A touch of formal

Eil'Fe: T
E; '+ sheep(e) : T

(T-SHEEP)

A touch of formal

SheepAux(v, v, H, 0) =v'; H'; {+t = '}
sheep(v); H~ v'; H'
(R-SHEEP)

A touch of formal

SheepAux@@ H, 0) =v'; H; {+t =}

heep s H~ v’y H
(R-SHEEP)
Original object

A touch of formal

SheepAux@@ H, 0) =v'; H; {+t =}

heep s H~ v’y H
(R-SHEEP)
Original object

A touch of formal

SheepAux@@ H, 0) =v'; H; {+t =}

heep s H~ v’y H
(R-SHEEP)
Original object

A touch of formal

SheepAux (v, 'v,/@ ? =v'; H'; {t =}

sheep (v) ; v'; H’
-SHEEP)
Original heap

A touch of formal

Map

SheepAux (v, v, ’H, — D

sheep(v); H~ v'; H'
(R-SHEEP)

A touch of formal

SheepAux(v, v, H, ?) "@\’H {v = "}
sheep(v); H~~

(R-SHEEP)

Sheep clone

A touch of formal

SheepAux(v, v, H, 0) = v’; @, {v =}
sheep(v); H~ v’
(R-SHEEP)

New heap (containing the
Sheep clone)

A touch of formal

- SheepAux function:

- R-SheepInside: Copies the object if it is inside the original
object.

- R-SheepOutside: Creates an alias to the object if the object is
outside the original object.

- R-SheepRef: Creates a reference to an existing Sheep clone of an
object using the Map.

- R-SheepNull: Returns a null, when Sheep cloning a null.

Can we clone it?

- Lets Sheep clone object A.

’_——-~‘

//’ D
A
|
| _~C
B ¥ e
— —

Can we clone it?

- R-SheepInside creates the object A’ by copying A.

/_——~~>

// D
A A’
|
L _Jc
B ¥ 7
— =

Can we clone it?

- R-SheepOutside creates an alias to D.

7 D N
Z N
A A’
|
l C
B // 7
— =

Can we clone it?

- R-SheepInside creates the object B’ by copying B.

g “To| ™~
Z N\
A A’
I |
| C |
B // e BI
—
Map: A > A’
D>D
B > B’

Can we clone it?

- R-SheepInside creates the object C’ by copying C.

- T = -~
// D \\
A A’
I |
~ C ~ C’
é //// Bl, //
—
Map: A > A’
D>D
B >» B’
C>»C’

.... Yes we can!

- R-SheepRef creates the reference from object C’ to
object B’ using the map.

Map: A > A’

C>»C’

Proving the formalism

Subject reduction case: R-SHEEP.

For all H, H', v, V', and N, if H +- sheep(v) : N and - H OK and
sheep(v);H ~ v';H' then H'Fv' : N and - H' OK.

Proving the formalism

Subject reduction case: R-SHEEP.
For all’H, H', v, v', and N, if H - sheep(v) :@and - H OK and

@v);?{ M@then H' o' :(N)and F H' oK.

N

SheepAux(v, v, H, 0) =v'; H'; {+t = '}
sheep(v); H~ v'; H'
(R-SHEEP)

Proving the formalism

Lemma: Mapped type preserves type well-formedness.

For all H, map, and N, if - H OK, H F map OK, and H F N OK
then H - map(/V) OK.

map = {¢ — '}
map(N) = ['/tIN

Proving the formalism

Lemma: Mapped type preserves type well-formedness.

For all H, map, and N, if - H OK, H F map OK, and H F N OK
then H - map(/V) OK.

map = {¢t — ('}
map(N) = [//tJN

Proving the formalism

Lemma: Mapped type preserves type well-formedness.

For all H, map, and N, if - H OK, H F map OK, and H F N OK
then H - map(/V) OK.

map = {¢ — '}

map (V) =

Proving the formalism

Lemma: Mapped type preserves type well-formedness.

For all 1, map, and N, if + H oK, H F(@ap)ok, and H H(V)oK
‘.map(D

then H N)OK.

map = {¢t — ('}
map(N) = ['/tIN

Correctness of the formalism

Correctness property: Sheep Cloning creates a new object.

For all’H, H', v, and /', if F H OK and sheep(t); H~ /; H' then
V' ¢ dom(H) and v # !'.

Where: ¢ =A
V= A
/’ ————— -——
e D N
Z AN
A/

Correctness of the formalism

Correctness property: Sheep Cloning creates a new object.

For all’H, H', v, and /', if F H OK and sheep(t); H~ /; H' then
V' ¢ dom(H) and v # !'.

Where: ¢ =A
V= A
/’ ————— -——
e D N
Z AN
A/

Correctness of the formalism

Correctness property: Sheep Cloning creates a sub-heap that
contains the new object.

For all H, H', H", ¢, and !/, if + H OK and sheep(r); H~ /; H’
and v # « then 3 H" where H' =H, H" and /' € dom(H") and 1 €
dom(H) .

Correctness of the formalism

Correctness property: Sheep Cloning creates a sub-heap that
contains the new object.

For all’H, H', H", ¢, and !/, if + H OK and sheep(r); H~ 1/; H’
and v # « then 3 H" where H' =H, H" and /' € dom(H") and 1 €
dom(H) .

Correctness of the formalism

Correctness property: Sheep Cloning creates a sub-heap that
contains the new object.

For all’H, H', H", ¢, and !/, if + H OK and sheep(r); H~ 1/; H’
and v # « then 3 H" where H' =H, H" and /' € dom(H") and 1 €
dom(H) .

ST o]~~~

A/
|

Correctness of the formalism

Correctness property: All new objects are in the representation
of the clone, and all objects in that representation are new.

For all H, H', ¢, and /, if + H OK and sheep(r); H~ /; H’
where H' = H, H” and J/ # + then " € dom(H") if and only if

H B =<

T o] ™~

Ar
I

Correctness of the formalism

Correctness property: All new objects are in the representation
of the clone, and all objects in that representation are new.

For all H, H', ¢, and /, if + H OK and sheep(r); H~ /; H’
where H' = H, H” and J/ # + then " € dom(H") if and only if

H B =<

Correctness of the formalism

Correctness property: All new objects are in the representation
of the clone, and all objects in that representation are new.

For all H, H', ¢, and /, if + H OK and sheep(r); H~ /; H’
where H' = H, H"” and ' # 1 then " € dom(#H") if and only if

H B =<

Correctness of the formalism

Correctness property: All objects outside the cloned object are
outside the clone.

For allH, H', ¢, and //, if F H OK and sheep(t); H~ /; H' where
V' #1and V" € dom(H) and H'F v <" then H'F . <",

Correctness of the formalism

Correctness property: All objects outside the cloned object are
outside the clone.

For allH, H', ¢, and //, if F H OK and sheep(t); H~ /; H' where
V' #1and V" € dom(H) and H'F v <" then H'F . <",

Correctness of the formalism

Correctness property: Sheep Cloning does not introduce refer-
ences to the cloned object’s representation.

For all H, H', ¢, and !/, if + H OK and sheep(t); H~ /; H' where
H =H,H" and ' # 1 and V £ — " € rangels (H") where | €
dom(H) then H' F . < .".

Correctness of the formalism

Correctness property: Sheep Cloning does not introduce refer-
ences to the cloned object’s representation.

For all H, H', ¢, and !/, if + H OK and sheep(t); H~ /; H' where
H =H,H" and ' # 1 and V £ — " € rangels (H") where | €
dom(#H) then H'F . < .".

Correctness of the formalism

Correctness property: For all references from an object inside
the clone to an object outside the clone, there is a reference to the
same object from inside the cloned object.

For all H, H', ¢, and /, if + H OK and sheep(t); H~ /; H’
where H' = H, H" and /' # 1 and V £ — " € rangel, (H") and
H' 4V < then 3 £ — " € H(t*) |2 where H' F * <.

A< D

Correctness of the formalism

Correctness property: For all references from an object inside
the clone to an object outside the clone, there is a reference to the
same object from inside the cloned object.

For all H, H', ¢, and /, if + H OK and sheep(t); H~ /; H’
where H' = H, H" and /' # 1 and V £ — " € rangel, (H") and
H' 4V < then 3 £ — " € H(t*) |2 where H' F * <.

A< D

Correctness of the formalism

Correctness property: Sheep Cloning preserves owners-as-dominators.

For all H, H', ¢, and /', if F H OK and sheep(t); H~ (; H' and
H preserves owners-as-dominators then H’ preserves owners-
as-dominators.

Correctness of the formalism

Correctness property: Sheep Cloning preserves owners-as-dominators.

For all H, H', ¢, and /, if + H OK and sheep(t); H~ ('; H' and
H preserves owners-as-dominators then H’' preserves owners-
as-dominators.

ST o] o~

Ar
I

Correctness of the formalism

Correctness property: Sheep Cloning preserves owners-as-dominators.

For all H, H', ¢, and /, if + H OK and sheep(t); H~ ('; H' and
H preserves owners-as-dominators then H’ preserves owners-
as-dominators.

Summary

- Shallow is too shallow.

- Deep is too deep.

- Sheep = shallow + deep.

- Formalised sheep cloning.

- Proved soundness and correctness.

Thank you.

Questions?

