
Abstract Data Types in Object-Capability Systems

James Noble1, Sophia Drossopoulou2, Mark S. Miller3, Toby Murray4, Alex Potanin1
1Victoria University Wellington, 2Imperial College London, 3Google Inc, 4University of Melbourne

Abstract
The distinctions between the two forms of procedural data abstrac-
tion — abstract data types and objects — are well known. An ab-
stract data type provides an opaque type declaration, and an imple-
mentation that manipulates the modules of the abstract type, while
an object uses procedural abstraction to hide an individual imple-
mentation. The object-capability model has been proposed to en-
able object-oriented programs to be written securely, and has been
adopted by a number of practical languages including JavaScript,
E, and Newspeak. This short paper addresses the question: how can
we implement abstract data types in an object-capability language?

1. Introduction
Objects and abstract data types are not the same thing,

and neither one is a variation of the other. They are funda-
mentally different and in many ways complementary.

On Understanding Data Abstraction, Revisited,
William Cook [2].

William Cook’s “On Understanding Data Abstraction, Revis-
ited” [2] emphasises a dichotomy between abstract data types, on
one hand, and objects on the other.

Based on facilities originating in Alphard [23] and CLU [8],
Cook defines an ADT as consisting of “a public name, a hidden
representation, and operations to create, combine and observe val-
ues of the abstraction”. The identification of a “public name” em-
phasises the fact that ADTs are not first class — certainly ADTs
are not first class in most subsequent modular programming lan-
guages [1, 9, 21, 22]. An ADT has a hidden representation: this
representation is not of the (non-first-class, singleton) ADT itself,
but of the instances of the ADT — the values of the abstraction
that are manipulated by the ADT’s operations. ADTs encapsulate
their implementations using type abstraction: all the instances of an
ADT are instances of the same (concrete) type, and the language’s
(static) type system ensures that the details of the instance’s im-
plementations cannot be accessed outside the lexical scope of the
ADT’s definition.

In contrast, objects are essentially encapsulated individual com-
ponents that use procedural abstraction to hide their own inter-
nal implementations [2]. “Pure” objects do not involve a hidden
type, or indeed any form of type abstraction: rather an object is a
self-referential record of procedures. Whereas ADTs are typically
supported in statically typed languages (because they depend on
type abstraction), objects are as common in dynamically typed lan-
guages as in statically typed languages.

According to Cook, ADTs and objects have complimentary
strengths and weaknesses. Objects are organised around data, so it
is easy to add a different representation of an existing interface, and
have that implementation interoperate with every other implemen-
tation of that interface. On the other hand, it is easier to add a new
operation to an ADT, but hard to change an ADT’s representation.

A crucial difference, however, is that ADTs offer support for
what Cook calls “complex operations”: that is, operations that in-
volve more than once instance. Complex operations may be low-
level, such as arithmetical operations on two machine integers, or
higher level operations, such as calculating the union of two or
more sets, or a database style join of several indexed tables. The
distinguishing factor is that these operations are complex in that
implementations must “inspect multiple representations” [2]. Com-
plex operations are easy to support with ADTs: all the instances of
the ADT are encapsulated together in the ADT, and the code in the
ADT has full access to all the instance’s representations. In con-
trast, pure object-oriented programming does not support complex
operations: each object is individually encapsulated and only one
representation can be accessed at any time.

This is particularly the case in the pure object-oriented systems
designed for security. Following Butler Lampson [7], Miller [11]
defines the key design constraint of an object-capability system:
“A direct access right to an object gives a subject the permission
to invoke the behaviour of that object”. A programming language
or system that grants one object privileged access to another object
does not meet this criterion.

This, then, is the question addressed by this paper: how can
we preserve the encapsulation benefits of Abstract Data Types,
but implement them in an object-capability aka. purely object-
oriented language? The key design question is: how do we model
the boundary between the protected outside interface of an ADT
and the shared inside implementation, and how do we manage
programs that cross that boundary? [4, 10, 12, 13, 15, 18]

2. Mint as an Abstract Data Type
We return once again to the well-worn Mint/Purse (or Bank/Ac-
count) example [10, 11, 13]. A Mint (a Bank) can create new Purses
(Accounts) with arbitrary balances, while a purse knows its bal-
ance, can accept deposits from another purse, and can also sprout
new empty purses. We can characterise the Mint/Purse example as
an Abstract Data Type as follows:

1. makePurse(Number) −→ Purse

2. deposit(Purse, Number, Purse) −→ Boolean

3. balance(Purse) −→ Number

4. sprout −→ Purse

Here, makePurse creates a new purse with a given balance, de-
posit transfers funds into a destination purse from a source purse,
and balance returns a purse’s balance. We also have an auxiliary
operation sprout that makes a purse with a zero balance.

For added credibility, we can even define the type’s behaviour
axiomatically:

1. deposit(makePurse(D), A, makePurse(S)) = true ;

makePurse(D +A), A > 0.

IWACO 2016 1 2016/7/9

2. deposit(makePurse(D), A, makePurse(S)) = true ;

makePurse(S −A), A > 0.

3. sprout ; makePurse(0)

4. balance(makePurse(N)) ; N

These axioms reduce the ADT to a normal form where each purse
is just created by makePurse with its balance. The nature of the
Mint/Purse design as an ADT is shown by the deposit method
which must update the balances of both the source and destination
purses. (As we will see, this is a key difficulty when implement-
ing the Mint/Purse system in a pure object-capability language, be-
cause such a language cannot permit methods to access the repre-
sentation of more than one object [2].)

This description of Mint/Purse as an ADT obscures a couple of
important issues. The first of these is that some of the operations
on the ADT are more critical than others: notably that makePurse
operation ‘’inflates the currency” [13], that is it increases the sum
of all the balances of all the ADT’s purses. This operation must be
protected: it should only be invoked by components that, by de-
sign, should have the authority to create more money. The other
operations can be called by general clients of the ADT to transfer
funds between purses but not affect the total money in the system
— this is why there is the auxiliary sprout operation which also
creates a new purse, but which does not add additional funds into
the system. In an object-oriented system, particularly an object-
capability system, this restriction can be enforced by ensuring that
the makePurse operation is offered as a method on a distinguished
object, and access to that object is carefully protected. Languages
based on ADTs typically use other mechanisms (such as Eiffel’s re-
stricted imports, or Modula-3’s multiple interfaces, C++’s friends)
to similar effect. These approaches are rather less flexible than us-
ing a distinguished object, as typically they couple the ADT im-
plementation to concrete client modules — on the other hand, the
extra object adds complexity to the design.

The second issue is that, in an open system, particularly in an
open distributed system, programs (and their programmers) cannot
assume that all the code is “well behaved”. This is certainly the
case for a payments system: the point of a payment system is to act
as trusted third party that allows one client to pay another client,
even though the clients may not trust each other, or indeed, one
client may not exist at the time another client is written. In that
sense, the notion of an “open system” as a system is, at best, ill-
defined: where new components or objects can join and leave a
system dynamically, questions such as what is the boundary of the
system, which components comprise the system at any given time,
or what are the future configurations of the system, are very difficult
to answer.

The question then is: how best can we implement such an ADT
in a pure object-oriented language, particularly one adopting an
object-capability security model, within an “open world”: where an
ADT may have to interoperate with components that are not known
in advance, and that cannot be trusted by the ADT?

3. Implementing the Mint
We now try and answer that question, considering a number of dif-
ferent designs to support ADTs. We take as our example the “Mint
and Purse” system ubiquitous in object-capability research [13],
and provide various different Grace implementations to illustrate
different implementation patterns.

3.1 Sealer/Unsealer
Our first implementation is based on the “classic” Mint in E, mak-
ing use of sealer/unsealer brand pairs. The sealer/unsealer design
encodes the Mint/Purse ADT into two separate kinds of objects,

Mints and Purses (see figure 1). The Mint capability (i.e. the Mint
object) must be kept secure by the owner of the whole system, as it
can create funds. On the other hand, Purses can be communicated
around the system: handing out a reference to a Purse only risks the
funds that are deposited into that purse (now or in the future).

type Mint = interface {
purse(amount : Number) −> Purse
}

type Purse = interface {
balance −> Number
deposit(amount : Number, src : Purse) −> Boolean
sprout −> Purse
}

Figure 1. Mints and Purses

This design is based on brand pairs [13, 14]. Brand pairs are
returned from the makeBrandPair method, which returns a pair of
Sealer and an Unsealer objects. The Sealer object’s seal method
places its argument into an opaque sealed box: the object can
be retrieved from the box only by the corresponding Unsealer
’s unseal method. The sealer/unsealer pairs can be thought of as
modelling public key encryption, where the sealer is the public key
and unsealer the private key (see Figure 2).

type Sealing = interface {
makeBrandPair −> interface {
sealer −> Sealer
unsealer −> Unsealer
}
}

type Sealer = interface { seal(o : Object) −> Box }

type Unsealer = interface { unseal(b : Box) −> Object }

type Box = interface { }

Figure 2. Brand Pairs

We can implement these two types using two nested Grace
classes, (see figure 3, which follows the nesting in the E imple-
mentation [13]). The outer class implements the Mint type, with
its purse method implemented by the nested class purse. Thanks
partly to the class nesting, this implementation is quite compact.
The Mint class itself is straightforward, holding a brandPair that
will be used to maintain the integrity of the ADT, i.e. the whole
Mint and Purse system. Anyone with access to a mint can create
a new purse with new funds simply by requesting the purse class.
(Grace doesn’t need a new keyword to create instances of classes
— just the class name is enough.) There is a sprout method at the
end of the purse class so that clients with access to a purse (but
not the mint) can create new empty purses (but not purses with an
arbitrary balance).

The work is all done inside the purses. Each purse has a
per-instance private variable balance, and a deposit method that,
given an amount and a valid source purse which belongs to this
Mint/Purse system (i.e. which represents an instance of this ADT)
adjusts the balance of both purse objects to perform the deposit.
The catch is that the deposit method, here on the destination purse,
must also modify the balance of the source purse. In a system that
directly supported ADTs (such as many class-based OO languages
[2]) this is simple: the balance fields would be per-class private and
the deposit method could just access them directly (see figure 4).

IWACO 2016 2 2016/7/9

class mint −> Mint is public {
def myMint = self
def brandPair = sealing.makeBrandPair

class purse(amount : Number) −> Purse {
var balance := amount

method decr(amt : Number) −> Boolean is confidential {
if ((amt < 0) || (amt > balance)) then {

return false }
balance := balance − amt
return true }

method getDecr
{brandPair.sealer.seal { amt −> decr(amt) } }

method deposit(amt : Number, src : Purse) −> Boolean {
if (amt < 0) then { return false }
var srcDecr
try { srcDecr := brandPair.unsealer.unseal(src.getDecr) }
catch { −> return false }

if (srcDecr.apply(amt)) then {
balance := balance + amt
return true }

return false }

method sprout { purse(0) }
}
}

Figure 3. Sealer/Unsealer based Mint

method brokenDeposit(amt : Number, src : Purse) −> Boolean
{ if ((amount >= 0) && (src.balance >= amount))

then {
src.balance := src.balance − amount
balance := balance + amount
return true

} else {return false}
}

Figure 4. ADT deposit method

This is not possible in an object-capability language because
objects are encapsulated individually. The brokenDeposit method
could only work if each purses’ balance field was publicly readable
and writeable: but in that case, any client could do anything it
wanted to any purse it could access. Rather, in this design, the
decr and getDecr and deposit methods, and the sealer/unsealer
brandPair, collaborate to implement deposit without exposing their
implementation beyond the boundary of the ADT. First, the decr
method can decrease a purse’s balance: this method is annotated
as confidential, that is, per-instance private. Second, the public
getDecr wraps that method in a lambda expression “{ amt −> decr
(amt) }” and then uses the brandPair to seal that lambda expression,
that is put it into an opaque box that offers no interface to any
other object. Although getDecr is public, so it can be called by any
object that has a reference to a purse, an attacker does not gain any
advantage by calling that method, because the result is sealed inside
the opaque box. Finally, the deposit method will use the same brand
pair to unseal the box, and can then invoke the lambda expression
to decrement the source purse. This remains secure because each
instance of the mint class will have their own brand pair, and so
can only unseal their own purses’ boxes — the unseal method will

throw an exception if it is passed a box that was sealed by a different
brand pair.

3.2 Generalising the Sealer/Unsealer
The previous subsection’s basic Mint/Purse design works well
enough for, well, purses and mints, but sealing a single lambda
expression only works when there is just one operation that needs
to access two (or more) instances in the ADT. We can generalise
the sealer-unsealer design by sealing a more capable object to rep-
resent the instances of the ADT.

In this design, we have an ExternalPurse that offers no public
methods, and an InternalPurse that stores the ADT instance data, in
this case the purse’s balance (see figure 5).

type ExternalPurse = interface { }

type InternalPurse = interface {
balance −> Number
balance:= (n : Number)
}

Figure 5. External and Internal Purses

Because the external purses are opaque, we need a different
object to provide the ADT operations — effectively to reify the
ADT as a whole. Rather than making requests to the ADT instance
objects directly (“dst.deposit(amt, src)”) we must pass the ADT
instances to the object reifying the ADT, e.g.:

mybank.deposit(dstPurse, amt, srcPurse)

In fact, to deal with the difference in privilege between creating
new purses containing new money, versus manipulating existing
purses with existing money, this design needs two objects: an Issuer
that presents the main interface of the ADT, and which can be
publicly available, and a Mint that permits inflating the currency,
and consequently must be kept protected (see figure 6).

type Issuer = interface {
balance(of : ExternalPurse) −> Number
deposit(to : ExternalPurse,

amount : Number,
from : ExternalPurse) −> Boolean

sprout −> ExternalPurse
}

type Mint = interface {
purse(amount : Number) −> ExternalPurse
issuer −> Issuer
}

Figure 6. Splitting the Issuer from the Mint

These interfaces can be implemented with a generalisation of
the basic mint design (see figure 7). Each mint again has a brand
pair, and auxiliary (confidential) methods to seal and unseal an
InternalPurse within an opaque sealed box: these boxes will be used
as the ExternalPurse objects. A new internal purse is just a simple
object with a public balance field; an external purse is just an inter-
nal purse sealed into a box with the brand pair. Implementing the
ADT operations is quite straightforward: any arguments represent-
ing ADT instances (here, external purses) are unsealed, yielding the
internal representations (internal purses) and then the operations
implemented directly on the internal representations. An invariant
of this system, of course, is that those internal representation ob-
jects are confined with the object reifying the whole ADT: they can
never be accessed outside it.

IWACO 2016 3 2016/7/9

class mint −> Mint {

def myBrandPair = sealing.makeBrandPair

method seal(protectedRep : InternalPurse) −> ExternalPurse
is confidential { myBrandPair.sealer.seal(protectedRep) }

method unseal(sealedBox : ExternalPurse) −> InternalPurse
is confidential { myBrandPair.unsealer.unseal(sealedBox) }

method purse(amount : Number) −> ExternalPurse {
seal(object { var balance is public := amount }) }

def issuer is public = object {

method sprout −> ExternalPurse { purse(0) }

method balance(of : ExternalPurse) −> Number {
return unseal(of).balance}

method deposit(to : ExternalPurse,
amount : Number,
from : ExternalPurse) −> Boolean {

var internalTo
var internalFrom
try {

internalTo := unseal(to) // throws if fails
internalFrom := unseal(from) // throws if fails

} catch { −> return false }

if ((amount >= 0) && (internalFrom.balance >= amount))
then {
internalFrom.balance := internalFrom.balance − amount
internalTo.balance := internalTo.balance + amount
return true
} else {return false}

}
}
}

Figure 7. Generalised Sealer/Unsealer based Mint

3.3 Hash table
A similar design can employ a hash table, rather than sealer/un-
sealer brand-pairs to map from external to internal representations
(see figure 8). This has the advantage that the external versions of
the ADT instances have to be the sealed boxes themselves, and can
offer interfaces so that they can be used directly as the public inter-
face of the ADT. This means we do not need to split the ADT object
into two objects to distinguish between a public interface (“Issuer”)
and a private interface (“Mint”).

The implementation of this design is probably more straightfor-
ward than the sealer/unsealer design (see figure 9). The mint class
contains a map (here instances) from external to internal purses; we
also have a couple of helper methods to check if an (external) purse
is valid for this mint, and to get the internal purse corresponding to
an external purse.

To actually make a new purse, the mint makes a pair of objects
(one internal and one external purse), stores them into the instances
map, and returns the external purse. As in the sealer/unsealer based
design, here the Mint object reifying the ADT must still offer
methods implementing the ADT operations. These operations are
by the external purses to implement the ADT: they cannot generally
be used by the ADT’s clients as the reified ADT object (the mint)
can inflate the currency by creating non-empty purses, so that
capability must be kept confined.

type ExternalPurse = interface {
balance −> Number
deposit(amount : Number, src : ExternalPurse) −> Boolean
sprout −> ExternalPurse
}

type Mint = interface {
purse(amount : Number) −> ExternalPurse
deposit(to : ExternalPurse,

amount : Number,
from : ExternalPurse) −> Boolean

balance(of : ExternalPurse) −> Number
sprout −> ExternalPurse
}

type InternalPurse = interface {
balance −> Number
balance:= (Number) −> Done
deposit(amount : Number, src : ExternalPurse) −> Boolean
}

Figure 8. Interfaces for Hash Table based Mint

class mint −> Mint {

def instances = collections.map[[ExternalPurse,InternalPurse]]

method valid(prs : ExternalPurse) −> Boolean
{ instances.contains(prs) }

method internal(prs : ExternalPurse) −> InternalPurse
{ instances.get(prs) }

method purse(amount : Number) −> ExternalPurse {
def ext = externalPurse(self)
def int = internalPurse(amount)
instances.put(ext, int)
return ext
}

method deposit(to : ExternalPurse,
amount : Number,
from : ExternalPurse) −> Boolean {

if ((valid(to)) && (valid(from))) then {
return internal(to).deposit(amount, internal(from))}

return false
}
method balance(prs : ExternalPurse) −> Number
{ internal(prs).balance }

method sprout −> ExternalPurse {purse(0)}
}

Figure 9. Hash table based Mint

The internal purse implementation is also straightforward. We
could have used just objects holding a balance field, but here we
add some additional behaviour into the representation objects (see
figure 10).

Finally, the externalPurse class implements the ADT instances
— the public purses — as “curried object” proxies that delegate
their behaviour back to the mint object that represents the whole
ADT. Here we give the external purses that mint as a parameter:
this would work equally well by nesting the external purse class
within the mint (see figure 11).

IWACO 2016 4 2016/7/9

class internalPurse(amount : Number) −> InternalPurse {
var balance is public := amount
method deposit(amount : Number, src : InternalPurse)

−> Boolean
{ if ((amount >= 0) && (src.balance >= amount)) then {

src.balance := src.balance − amount
balance := balance + amount
return true }

return false
}

}

Figure 10. Internal Purse for Hash Table based Mint

class externalPurse(mint' : Mint) −> ExternalPurse {
def mint = mint'
method balance {mint.balance(self)}
method sprout −> ExternalPurse { mint.sprout }
method deposit(amount : Number, src : ExternalPurse)

−> Boolean { return mint.deposit(self, amt, src)
}
}

Figure 11. External Purse for Hash Table based Mint

3.4 Owners as Readers
In earlier work we have argued that an owners-as-readers discipline
can provide an alternative formulation of ADTs [16]. Owners-as-
readers depends on object ownership rather than type abstraction
to encapsulate the implementations of the ADT instance [19]. In
this model, all the instances are owned by an additional object that
reifies the whole ADT, and the ownership type system ensures that
they can only be manipulated within the scope of that object. Where
owners-as-readers differs from other ownership disciplines is that
other objects outside the ADT can hold references to the ADT
instance objects, but those outside references appear opaque, and
any requests on those objects from outside raise errors.

A range of ownership systems can be characterised as provid-
ing an owners-as-accessors discipline [3, 5, 6, 17, 20]: we have
discussed these in more detail elsewhere [16]. Owners-as-readers
systems clearly do not meet the key requirement of an object-
capability system, precisely because owned objects are opaque out-
side their owners — although they would meet the following modi-
fied criterion: “A direct access right to an object gives a subject the
permission to invoke the behaviour of that object from inside that
object’s owner”.

The resulting design is most similar to the sealer/unsealer ver-
sion, because outside the mint ADT the internal purses are opaque.
This means clients need to interact with the object reifying the
ADT, and so we must split that object to separate the privileged
capability (again, Mint) from the general capabilities to use the rest
of the ADT operations (again, Issuer). On the other hand, we do
not need an explicit split between internal and external purses (see
figure 12).

Implementing this really should be straightforward by now. We
make a purse class that only holds a balance: crucially that class
is annotated is owned. Then, the main ADT operations are defined
inside the issuer object — the methods implementing these opera-
tions can just access the owned purse objects directly because they
are within the mint: the owners-as-readers constraint ensures that
the purses cannot be accessed from outside the ADT’s boundary
(see figure 13).

type Mint = interface {
purse(amount : Number) −> Purse
issuer −> Issuer
}

type Issuer = interface {
balance(of : Purse) −> Number
deposit(to : Purse,

amount : Number,
from : Purse) −> Boolean

sprout −> Purse
}

type Purse = interface {
balance −> Number
balance:= (n : Number)
}

Figure 12. Interfaces for Owners-as-Readers based Mint

class mint −> Mint {

class purse(amount : Number) −> Purse is owned {
var balance is public := amount
}

def issuer is public = object {

method sprout −> Purse { purse(0) }

method deposit(to : Purse is owned, amount : Number,
from : Purse is owned) −> Boolean {

if (
(amount >= 0) && (from.balance >= amount))

then {
from.balance := from.balance − amount
to.balance := to.balance + amount
return true
} else {return false}

}

method balance(of : Purse is owned) −> Number {
return of.balance}

}
}

Figure 13. Owners-as-Readers based Mint

From the perspective of the owners-as-readers design, we can
consider that both the sealer/unsealer or the map-based designs em-
body an ad-hoc form of ownership: in both cases there are internal
capabilities that must be confined within the ADT implementation,
and the ownership — the control of the ADT’s boundary — is em-
bodied in the sealer/unsealer’s brand-pair, or in the map from ex-
ternal to internal purses: here that ownership is supported directly
in the programming language.

We can also speculate on whether there is an obvious way to
provide a public ADT interface via the purses, rather than again
requiring operations to be addressed to the object reifying the ADT
(here the Issuer and the Mint. The answer is both yes and no: yes,
because a language could e.g. distinguish between ADT-public and
ADT-private operations on those instance objects, and no, because
that takes us right back to ADT oriented languages with per-class
access restrictions, that is, right away from the object-capability
model.

IWACO 2016 5 2016/7/9

4. Conclusion
In this paper we have considered issues in designing and imple-
menting abstract data types in purely object-oriented systems, and
in object-capability systems in general.

The first design we considered used sealer/unsealer brand pairs
to encapsulate the ADT’s shared state, but kept that state within
the individual purse objects. The code that implemented the system
is also primarily in the purses — a mint object primarily exists to
provide a separate capability to inflate the currency.

Our second design also encapsulates the ADT implementation
using sealer/unsealer pairs, but generalises the design, to split each
logical purse into two different capabilities, that is, into two sepa-
rate objects, one of which is accessible from outside the ADT, and
the second accessible only from inside. In this design, the external
purse objects are opaque, so in effect we also split the mint object
representing the whole ADT into an unprivileged Issuer, and the
privileged Mint.

Our third design retains the split between internal and external
purses, but uses a hash table rather than sealer/unsealer brand pair
to provide the encapsulation boundary. This has the advantage that
the external purses do not have to be the sealed boxes, and so we
can return to a more “object-oriented” style API, where clients
interact with the purse objects directly, rather than via the issuer
object; this means we no longer need to split the mint capability.
The catch, of course, is that this is probably the most complex
design that we consider in this paper.

Our final design revisits our owners-as-readers encapsulation
model, which tries to build in minimal support for ADTs in a dy-
namic, object-oriented setting. This is the smallest implementation,
because owners-as-readers renders the purses opaque outside the
ADT, and so the purse objects no longer need to be split in any
way. On the other hand, because the purses are opaque to all the
clients of the system, we again need an issuer offering the classic
ADT-style interface.

We note that aliasing issues arise pervasively in these object-
capability implementations. Wherever we have to split objects to
divide public and private capabilities (i.e. those capabilities on the
inside and outside of the ADT’s boundaries) then there will be an
implicit aliasing relationship between those objects. These designs
also involve confinement or ownership relationships, implicitly or
explicitly, in that the internal object-capabilities must not be acces-
sible from outsides.

Finally — as with much object-capability research — we have
once again tackled the mint/purse system. The abstract data type
perspective can explain why this example is so ubiquitous: because
the mint/purse system is about as simple an abstract data type as
you can get: the data held in each ADT instance is just a single
natural number. We hypothesise that many of the examples used in
object-capability systems may be better modelled as ADTs, rather
than objects, and that much of the difficulty in implementing those
examples in object-capability systems stems directly from this in-
compatibility in underlying model. We hope the object-capability
designs that we have presented here, however, should be able to
cope with a range of more complex abstract data types.

Acknowledgements
We thank the anonymous reviewers for their comments. This work
was supported in part by a James Cook Fellowship and by the Royal
Society of New Zealand Marsden Fund.

References
[1] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill

Kalsow, and Greg Nelson. Modula-3 language definition. SIGPLAN
Not., 27(8):15–42, August 1992. . URL http://doi.acm.org/
10.1145/142137.142141.

[2] William R. Cook. On understanding data abstraction, revisited. In
OOPSLA Proceedings, pages 557–572, 2009.

[3] Christos Dimoulas, Scott Moore, Aslan Askarov, and Stephen Chong.
Declarative policies for capability control. In Proceedings of the 27th
IEEE Computer Security Foundations Symposium, June 2014.

[4] Sophia Drossopoulou, James Noble, and Mark. S. Miller. Swapsies on
the Internet. In PLAS, 2015.

[5] Donald Gordon and James Noble. Dynamic ownership in a dynamic
language. In DLS Proceedings, pages 9–16, 2007.

[6] Olivier Gruber and Fabienne Boyer. Ownership-based isolation for
concurrent actors on multi-core machines. In ECOOP, pages 281–
301, 2013.

[7] Butler W. Lampson. Protection. Operating Systems Review, 8(1):18–
24, January 1974.

[8] Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Schaffert.
Abstraction mechanisms in CLU. Comm. ACM, 20(8):564–576, Au-
gust 1977.

[9] David MacQueen. Modules for Standard ML. In LISP and Functional
Programming, pages 198–207. ACM, 1984. . URL http://doi.
acm.org/10.1145/800055.802036.

[10] Mark S. Miller, Tom Van Cutsem, and Bill Tulloh. Distributed elec-
tronic rights in JavaScript. In ESOP, 2013.

[11] Mark Samuel Miller. Robust Composition: Towards a Unified Ap-
proach to Access Control and Concurrency Control. PhD thesis, Bal-
timore, Maryland, 2006.

[12] Mark Samuel Miller. Secure Distributed Programming with Object-
capabilities in JavaScript. Talk at Vrije Universiteit Brussel,
mobicrant-talks.eventbrite.com, October 2011.

[13] Mark Samuel Miller, Chip Morningstar, and Bill Frantz. Capability-
based financial instruments: From object to capabilities. In Financial
Cryptography. Springer, 2000.

[14] James H. Morris Jr. Protection in programming languages. CACM, 16
(1), 1973.

[15] James Noble. Iterators and encapsulation. In TOOLS Europe, 2000.
[16] James Noble and Alex Potanin. On owners-as-accessors. In IWACO

Proceedings, 2014.
[17] James Noble, David Clarke, and John Potter. Object ownership for

dynamic alias protection. In TOOLS Pacific 32, 1999.
[18] James Noble, Robert Biddle, Ewan Tempero, Alex Potanin, and Dave

Clarke. Towards a Model of Encapsulation. In Dave Clarke, editor,
IWACO Proceedings, number 030 in UU-CS-2003. Utrecht University,
July 2003.

[19] Alex Potanin, Monique Damitio, and James Noble. Are your incoming
aliases really necessary? counting the cost of object ownership. In
International Conference on Software Engineering (ICSE), 2013.

[20] Erwann Wernli, Pascal Maerki, and Oscar Nierstrasz. Ownership, fil-
ters and crossing handlers. In Dynamic Language Symposium (DLS),
2012.

[21] Williaam A. Whitaker. Ada - the project: The DoD high order lan-
guage working group. In HOPL Preprints, pages 299–331, 1993.

[22] Niklaus Wirth. Programming in Modula-2. Springer Verlag, 1985.
isbn 0-387-15078-1.

[23] William A. Wulf, Ralph L. London, and Mary Shaw. An introduction
to the construction and verification of Alphard programs. IEEE Trans.
Softw. Eng., SE-2(4):253–265, 1976.

IWACO 2016 6 2016/7/9

http://doi.acm.org/10.1145/142137.142141
http://doi.acm.org/10.1145/142137.142141
http://doi.acm.org/10.1145/800055.802036
http://doi.acm.org/10.1145/800055.802036

	Introduction
	Mint as an Abstract Data Type
	Implementing the Mint
	Sealer/Unsealer
	Generalising the Sealer/Unsealer
	Hash table
	Owners as Readers

	Conclusion

